An introduction to time series and time series models

A lecture from Applied Time Series Analysis for Ecologists

Link to online course at http://faculty.washington.edu/eeholmes/

Eli Holmes, NOAA

An example of a study using time-series analysis work by Mark Scheuerell at NWFSC, Seattle

What evidence exists to support the hypothesis that large-scale oceanclimate drives fluctuations in Alaska salmon survival?

Alaska Chinook salmon

The data: time series of log recruits per spawner versus brood year for AYK region

The analysis (Dynamic Factor Analysis)

Raw Data: 15 time series (5 of 15 shown)

Can be described by 3 overall patterns

Results: 3 large-scale trends/drivers The different stocks weight on these differently.

Next analysis looks at correlation between the overall trends and large-scale environmental indicators

- Pacific Decadal Oscillation
- Arctic Oscillation Index

- Aleutian Low Pressure
- North Pacific Index

Introduction to time-series analysis in R

- Characteristics of time series (ts)
 - What is a ts?
 - Classifying ts
 - Trends
 - Seasonality (periodicity)
 - Stationarity

- Time-series models
 - White noise
 - Random walks
 - Autoregressive (AR) models
 - Moving average (MA) models
 - ARMA models

- Diagnostics for time series
 - Autocorrelation functions (ACF)
 - Correlograms

What is a time series?

- A time series (ts) is a set of observations taken sequentially in time
- A ts can be represented as a set

$${x_t: t = 1,2,3,...,n} = {x_1,x_2,x_3,...,x_n}$$

- For example, {10,31,27,NA,53,15}
- Univariate (e.g. total # of fish caught)
 or multivariate (e.g. # of each species
 caught)

Example of a time series of water usage typical versus during hockey championship game

Time of Day

How do we describe a time series?

$$observation_t$$
 = trend + cycle + e_t
 e_t = a time series also

Often the objective is to estimate or describe the trend and cycle in a time series, but to do this we need to describe/model the e_t.

Other times the objective is to model the e_t since we are trying to understand what drives the year-to-year (month-to-month) variation.

Cycles or seasonality in a time series

Annual numbers of lynx trapped in Canada from 1821-1934

Trend in a time series

Stationarity of time series

- Stationarity describes a particular statistical properties of a time series.
- In general, a time series is said to be stationary if there is
 - 1) no systematic change in mean or variance,
 - 2) no systematic trend up or down, and
 - 3) no periodic variations or seasonality

We typically remove the trend and cycles and treat e_t as stationary.

Describing a time series: classical decomposition

- Classical decomposition of an observed time series is a fundamental approach in time series analysis
- The idea is to decompose a time series $\{x_t\}$ into a trend, a seasonal component, and a remainder $\{e_t\}$

$$observation_t = trend + cycle + e_t$$
 $e_t = a time series also$

Which of these are stationary?

Classic time-series models

- A time series model for $\{x_t\}$ is a specification of the joint distributions of a sequence of random variables $\{X_t\}$ of which $\{x_t\}$ is thought to be a realization.
 - Time-series models these describe the et
 - White noise
 - Autoregressive (AR) models
 - Moving average (MA) models
 - ARMA models
 - Random walks an important type of nonstationary ts

Autocorrelation function (ACF): a powerful way to summarize a ts

 ACF measures the correlation of a time series against a time-shifted version of itself (& hence "auto")

Random walk with S = 1

The correlogram

Correlogram for deterministic trend

Non-stationary

Correlogram for sine wave

Discrete (monthly) sine wave

Non-stationary

Correlogram for trend + season

Linear trend + seasonal effect

Non-stationary

Correlogram for random sequence

Random sequence of 10 numbers repeated 10 times

Non-stationary

Correlogram for real data

Lake Washington phytoplankton

Classic time-series models

- A time series model for $\{x_t\}$ is a specification of the joint distributions of a sequence of random variables $\{X_t\}$ of which $\{x_t\}$ is thought to be a realization.
 - Time-series models these describe the et
 - White noise
 - Autoregressive (AR) models
 - Moving average (MA) models
 - ARMA models
 - Random walks an important type of nonstationary ts

White noise

White noise with S = 1

white noise x_t are

- 1) independent, and
- 2) identically distributed with a mean of zero

Random walk (RW)

Random walk with S = 1

A time series $\{x_t : t = 1,2,3,...,n\}$ is a random walk if

- 1) $x_t = x_{t-1} + w_t$, and
- 2) w_t is white noise

Random walks are NOT stationary!

Autoregressive (AR) models

 An autoregressive model of order p, or AR(p), is defined as

$$x_{t} = f_{1}x_{t-1} + f_{2}x_{t-2} + \dots + f_{p}x_{t-p} + w_{t}$$

where we assume

- 1) w_t is WN, and
- 2) $\phi_p \neq 0$ for order-*p* process
- *Note*: RW model is special case of AR(1) with $\phi_1 = 1$

Examples of AR(1) processes

AR(1) with f = 0.3

AR(p) can be stationary!

Examples of AR(1) processes

AR(1) with f = -0.9

Partial autocorrelation function

- The partial *autocorrelation function* (PACF) measures the linear correlation of a series x_t and x_{t+k} with the linear dependence of $\{x_{t-1}, x_{t-2}, ..., x_{t-(k-1)}\}$ removed
- It is defined as

Autoregressive (AR) models

 An autoregressive model of order p, or AR(p), is defined as

$$x_{t} = f_{1}x_{t-1} + f_{2}x_{t-2} + \dots + f_{p}x_{t-p} + w_{t}$$

where we assume

- 1) w_t is WN, and
- 2) $\phi_p \neq 0$ for order-*p* process
- *Note*: RW model is special case of AR(1) with $\phi_1 = 1$

ACF & PACF for AR(3) processes

AR(3) with $f_1 = 0.7$, $f_2 = 0.2$, $f_3 = -0.1$

AR(3) with $f_1 = -0.7$, $f_2 = 0.2$, $f_3 = -0.1$

PACF for AR(p) processes

Moving average (MA) models

 A moving average model of order q, or MA(q), is defined as

$$x_t = w_t + Q_1 w_{t-1} + \dots + Q_q w_{t-q}$$

where w_t is WN (with 0 mean)

- It is simply the current error term plus a weighted sum of the q most recent error terms
- Because MA processes are finite sums of stationary WN processes, they are themselves stationary

Examples of MA(q) processes

Autoregressive moving average models

• A time series is autoregressive moving average, or ARMA(p,q), if it is stationary and

$$X_{t} = f_{1}X_{t-1} + \dots + f_{p}X_{t-p} + W_{t} + Q_{1}W_{t-1} + \dots + Q_{q}W_{t-q}$$

Combines both AR(p) and MA(q)

Examples of ARMA(p,q) processes

ARMA(3,1): $f_1 = 0.7$, $f_2 = 0.2$, $f_3 = -0.1$, $q_1 = 0.5$

ARMA(1,3): $f_1 = 0.7$, $q_1 = 0.7$, $q_2 = 0.2$, $q_3 = 0.5$

ARMA(2,2): $f_1 = -0.7$, $f_2 = 0.2$, $q_1 = 0.7$, $q_2 = 0.2$

ARMA(2,2): $f_1 = 0.7$, $f_2 = 0.2$, $q_1 = 0.7$, $q_2 = 0.2$

ACF for ARMA(p,q) processes

PACF for ARMA(p,q) processes

Difference to remove trend/season

- Differencing is a very simple means for removing a trend or seasonal effect
- The 1st-difference removes a linear trend, a 2nd-difference would remove a quadratic trend, etc.
- For seasonal data, using a 1st-difference with *lag* = period removes both trend & seasonal effects
- Pro: no parameters to estimate
- Con: no estimate of stationary process

Using ACF & PACF for model ID

	ACF	PACF
AR(<i>p</i>)	Tails off	Cuts off after lag-p
MA(q)	Cuts off after lag-q	Tails off
ARMA(p,q)	Tails off (after lag [q-p])	Tails off (after lag [p-q])

Topics for this lab

- ts class in R
- Plotting ts objects
- Understand covariance & correlation
- Examine some simple ts models
- Use diff() for trend/season removal
- Examine properties via acf() & pacf()
- Examine AR(p) models
- Examine MA(q) models
- ARMA(p,q) models via 'arima.sim()'